In astronomy, an irregular moon, irregular satellite, or irregular natural satellite is a natural satellite following an orbit that is irregular in some of the following ways: Distant; inclined; highly elliptical; retrograde. They have often been Asteroid capture by their parent planet, unlike regular satellites formed in orbit around them. Irregular moons have a stable orbit, unlike temporary satellites which often have similarly irregular orbits but will eventually depart. The term does not refer to shape; Triton, for example, is a round moon but is considered irregular due to its orbit and origins.
, 356 irregular moons are known, orbiting all four of the (Jupiter, Saturn, Uranus, and Neptune). The largest of each planet are Himalia of Jupiter, Phoebe of Saturn, Sycorax of Uranus, and Triton of Neptune. Triton is rather unusual for an irregular moon; if it is excluded, then Nereid is the largest irregular moon around Neptune. It is currently thought that the irregular satellites were once independent objects orbiting the Sun before being captured by a nearby planet, early in the history of the Solar System. An alternative suggests that they originated further out in the Kuiper belt and were captured after the close flyby of another star
Jupiter | 51 | 4.7 | 89 | 24.2 (0.47rH) |
Saturn | 69 | 3.0 | 250 | 28.0 (0.41rH) |
Uranus | 73 | 1.5 | 10 | 20.4 (0.28rH) |
Neptune | 116 | 1.5 | 9 (including Triton) | 50.7 (0.44rH) |
There is no widely accepted precise definition of an irregular satellite. Informally, satellites are considered irregular if they are far enough from the planet that the precession of their orbital plane is primarily controlled by the Sun, other planets, or other moons.
In practice, the satellite's semi-major axis is compared with the radius of the planet's Hill sphere (that is, the sphere of its gravitational influence), . Irregular satellites have semi-major axes greater than 0.05 with apoapsis extending as far as to 0.65 . The radius of the Hill sphere is given in the adjacent table: Uranus and Neptune have larger Hill sphere radii than Jupiter and Saturn, despite being less massive, because they are farther from the Sun. However, no known irregular satellite has a semi-major axis exceeding 0.47 .
Earth's Moon seems to be an exception: it is not usually listed as an irregular satellite even though its precession is primarily controlled by the Sun and its semi-major axis is greater than 0.05 of the radius of Earth's Hill sphere. On the other hand, Neptune's Triton, which is probably a captured object, is usually listed as irregular despite being within 0.05 of the radius of Neptune's Hill sphere, so that Triton's precession is primarily controlled by Neptune's oblateness instead of by the Sun. Neptune's Nereid and Saturn's Iapetus have semi-major axes close to 0.05 of the radius of their parent planets' Hill spheres: Nereid (with a very eccentric orbit) is usually listed as irregular, but not Iapetus.
Given their distance from the planet, the orbits of the outer satellites are highly perturbed by the Sun and their orbital elements change widely over short intervals. The semi-major axis of Pasiphae, for example, changes as much as 1.5 Gm in two years (single orbit), the inclination around 10°, and the eccentricity as much as 0.4 in 24 years (twice Jupiter's orbit period). Consequently, mean orbital elements (averaged over time) are used to identify the groupings rather than osculating orbit at the given date. (Similarly, the proper orbital elements are used to determine the Asteroid family.)
After the capture, some of the satellites could break up leading to groupings of smaller moons following similar orbits. Resonances could further modify the orbits making these groupings less recognizable.
In addition, simulations indicate the following conclusions:
Retrograde satellites can be found further from the planet than prograde ones. Detailed numerical integrations have shown this asymmetry. The limits are a complicated function of the inclination and eccentricity, but in general, prograde orbits with semi-major axes up to 0.47 rH (Hill sphere radius) can be stable, whereas for retrograde orbits stability can extend out to 0.67 rH.
The boundary for the semimajor axis is surprisingly sharp for the prograde satellites. A satellite on a prograde, circular orbit (inclination=0°) placed at 0.5 rH would leave Jupiter in as little as forty years. The effect can be explained by so-called evection resonance. The apocenter of the satellite, where the planet's grip on the moon is at its weakest, gets locked in resonance with the position of the Sun. The effects of the perturbation accumulate at each passage pushing the satellite even further outwards.
The asymmetry between the prograde and retrograde satellites can be explained very intuitively by the Coriolis acceleration in the Rotating frame with the planet. For the prograde satellites the acceleration points outward and for the retrograde it points inward, stabilising the satellite.
The size distribution of asteroids and many similar populations can be expressed as a power law: there are many more small objects than large ones, and the smaller the size, the more numerous the object. The mathematical relation expressing the number of objects, , with a diameter smaller than a particular size, , is approximated as:
For irregular moons, a shallow power law ( q ≃ 2) is observed for sizes of 10 to 100 km,† but a steeper law ( q ≃ 3.5) is observed for objects smaller than 10 km. An analysis of images taken by the Canada-France-Hawaii Telescope in 2010 shows that the power law for Jupiter's population of small retrograde satellites, down to a detection limit of ≈ 400 m, is relatively shallow, at q ≃ 2.5. Thus it can be extrapolated that Jupiter should have moons 400 m in diameter or greater.
For comparison, the distribution of large Kuiper belt objects is much steeper ( q ≈ 4). That is, for every object of 1000 km there are a thousand objects with a diameter of 100 km, though it's unknown how far this distribution extends. The size distribution of a population may provide insights into its origin, whether through capture, collision and break-up, or accretion.
†For every object of 100 km, ten objects of 10 km can be found.
Around each giant planet, there is one irregular satellite that dominates, by having over three-quarters the mass of the entire irregular satellite system: Jupiter's Himalia (about 75%), Saturn's Phoebe (about 98%), Uranus's Sycorax (about 90%), and Neptune's Nereid (about 98%). Nereid also dominates among irregular satellites taken altogether, having about two-thirds the mass of all irregular moons combined. Phoebe makes up about 17%, Sycorax about 7%, and Himalia about 5%: the remaining moons add up to about 4%. (In this discussion, Triton is not included.)
Each planet's system displays slightly different characteristics. Jupiter's irregulars are grey to slightly red, consistent with C-type asteroid, P-type asteroid and . Some groups of satellites are observed to display similar colours (see later sections). Saturn's irregulars are slightly redder than those of Jupiter.
The large Uranian irregular satellites (Sycorax and Caliban) are light red, whereas the smaller Prospero and Setebos are grey, as are the Neptunian satellites Nereid and Halimede.
When the dispersion of the orbits is too wide (i.e. it would require Δ v in the order of hundreds of m/s)
Due to the smaller numbers, statistically significant conclusions about the groupings are difficult. A single origin for the retrograde irregulars of Uranus seems unlikely given a dispersion of the orbital parameters that would require high impulse (Δ v ≈ 300 km), implying a large diameter of the impactor (395 km), which is incompatible in turn with the size distribution of the fragments. Instead, the existence of two groupings has been speculated:
For Neptune, a possible common origin of Psamathe and Neso has been noted. Given the similar (grey) colours, it was also suggested that Halimede could be a fragment of Nereid. The two satellites have had a very high probability (41%) of collision over the age of the solar system.
The Tianwen-4 mission (to launch 2029) is planned to focus on the regular moon Callisto around Jupiter, but it may fly-by several irregular Jovian satellites before settling into Callistonian orbit.
Orbits
Current distribution
Origin
Long-term stability
Increasing eccentricity results in smaller pericenters and large apocenters. The satellites enter the zone of the regular (larger) moons and are lost or ejected via collision and close encounters. Alternatively, the increasing perturbations by the Sun at the growing apocenters push them beyond the Hill sphere.
Temporary captures
Physical characteristics
Size
The value of q is determined through observation.
Colours
low C-type asteroid 3–8% P-type asteroid 2–6% D-type asteroid 2–5% medium M-type asteroid 10–18% A-type asteroid 13–35% high E-type asteroid 25–60%
Spectra
Rotation
Families with a common origin
Dynamic groupings
Colour groupings
Observed groupings
Irregular satellites of Jupiter
Sinope, sometimes included into the Pasiphae group, is red and given the difference in inclination, it could be captured independently.
Pasiphae and Sinope are also trapped in secular resonances with Jupiter.
Irregular satellites of Saturn
File:Animation of Phoebe orbit around Saturn.gif|Animation of Phoebe's orbit.
Irregular satellites of Uranus and Neptune
According to current knowledge, the number of irregular satellites orbiting Uranus and Neptune is smaller than that of Jupiter and Saturn. However, it is thought that this is simply a result of observational difficulties due to the greater distance of Uranus and Neptune. The table at right shows the minimum radius (rmin) of satellites that can be detected with current technology, assuming an albedo of 0.04; thus, there are almost certainly small Uranian and Neptunian moons that cannot yet be seen.
Jupiter 1.5 km Saturn 3 km Uranus 7 km Neptune 16 km
These two groups are distinct (with 3σ confidence) in their distance from Uranus and in their eccentricity.
However, these groupings are not directly supported by the observed colours: Caliban and Sycorax appear light red, whereas the smaller moons are grey.
Exploration
Gallery
External links
|
|